Jumat, 22 Januari 2010

Logging a Gas Well

Logging refers to performing tests during or after the drilling process to allow geologists and drill operators to monitor the progress of the well drilling and to gain a clearer picture of subsurface formations. There are many different types of logging, in fact; over 100 different logging tests can be performed, but essentially they consist of a variety of tests that illuminate the true composition and characteristics of the different layers of rock that the well passes through. Logging is also essential during the drilling process. Monitoring logs can ensure that the correct drilling equipment is used and that drilling is not continued if unfavorable conditions develop.

It is beyond the scope of this website to get into detail concerning the various types of logging tests that can be performed. Various types of tests include standard, electric, acoustic, radioactivity, density, induction, caliper, directional and nuclear logging, to name but a few. Two of the most prolific and often performed tests include standard logging and electric logging.

Standard logging consists of examining and recording the physical aspects of a well. For example, the drill cuttings (rock that is displaced by the drilling of the well) are all examined and recorded, allowing geologists to physically examine the subsurface rock. Also, core samples are taken, which consists of lifting a sample of underground rock intact to the surface, allowing the various layers of rock, and their thickness, to be examined. These cuttings and cores are often examined using powerful microscopes, which can magnify the rock up to 2000 times. This allows the geologist to examine the porosity and fluid content of the subsurface rock, and to gain a better understanding of the earth in which the well is being drilled.

Electric logging consists of lowering a device used to measure the electric resistance of the rock layers in the 'down hole' portion of the well. This is done by running an electric current through the rock formation and measuring the resistance that it encounters along its way. This gives geologists an idea of the fluid content and characteristics. A newer version of electric logging, called induction electric logging, provides much the same types of readings but is more easily performed and provides data that is more easily interpreted.

An example of the data obtained through various forms of logging is shown below. In this representation, the different columns indicate the results of different types of tests. The data is interpreted by an experienced geologist, geophysicist, or petroleum engineer, who is able to learn from what appear as 'squiggly' lines on the well data readout.

The drilling of an exploratory or developing well is the first contact that a geologist or petroleum engineer has with the actual contents of the subsurface geology. Logging, in its many forms, consists of using this opportunity to gain a fuller understanding of what actually lies beneath the surface. In addition to providing information specific to that particular well, vast archives of historical logs exist for geologists interested in the geologic features of a given, or similar, area.

There are many sources of data and information for the geologist and geophysicist to use in the exploration for hydrocarbons. However, this raw data alone would be useless without careful and methodical interpretation. Much like putting together a puzzle, the geophysicist uses all of the sources of data available to create a model, or educated guess, as to the structure of the layers of rock under the ground. Some techniques, including seismic exploration, lend themselves well to the construction of a hand or computer generated visual interpretation of underground formation. Other sources of data, such as that obtained from core samples or logging, are taken into account by the geologist when determining the subsurface geological structures. It must be noted, however, that despite the amazing evolution of technology and exploration techniques, the only way of being sure that a petroleum or natural gas reservoir exists is to drill an exploratory well. Geologists and geophysicists can make their best guesses as to the location of reservoirs, but these are not infallible.

Two-dimensional seismic imaging refers to geophysicists using the data collected from seismic exploration activities to develop a cross-sectional picture of the underground rock formations. The geophysicist interprets the seismic data obtained from the field, taking the vibration recordings of the seismograph and using them to develop a conceptual model of the composition and thickness of the various layers of rock underground. This process is normally used to map underground formations, and to make estimates based on the geologic structures to determine where it is likely that deposits may exist.

There also exists a technique using basic seismic data known as 'direct detection'. In the mid-70's, it was discovered that white bands, called 'bright spots', often appeared on seismic recording strips. These white bands could indicate deposits of hydrocarbons. The nature or porous rock containing natural gas could often result in reflecting stronger seismic reflections than normal, water filled rock. Therefore, in these circumstances, the actual natural gas reservoir could be detected directly from the seismic data.

However, this does not hold universally. Many of these 'bright spots' do not contain hydrocarbons, and many deposits of hydrocarbons are not indicated by white strips on the seismic data. Therefore, although adding a new technique of locating petroleum and natural gas reservoirs, direct detection is not a completely reliable method.

One of the greatest innovations in the history of petroleum exploration is the use of computers to compile and assemble geologic data into a coherent 'map' of the underground. Use of this computer technology is referred to as 'CAEX', which is short for 'computer assisted exploration'.

With the proliferation of the microprocessor, it has become relatively easy to use computers to assemble seismic data that is collected from the field. This allows for the processing of much larger amounts of data, increasing the reliability and informational content of the seismic model. There are three main types of computer assisted exploration models: 2-dimensional, 3-D, and most recently, 4-D.

These imaging techniques, while relying mainly on seismic data acquired in the field, are becoming more and more sophisticated. Computer technology has advanced so far that it is now possible to incorporate the data obtained from different types of tests, such as logging, production information, and gravimetric testing which can all be combined to create a 'visualization' of the underground formation.

Thus geologists and geophysicists are able to combine all of their sources of data to compile one clear, complete image of subsurface geology. An example of this is shown where a geologist uses an interactive computer generated visualization of 3-D seismic data to explore the subsurface layers.

One of the biggest breakthroughs in computer-aided exploration was the development of three-dimensional (3-D) seismic imaging. 3-D imaging utilizes seismic field data to generate a three dimensional picture of underground formations and geologic features. This, in essence, allows the geophysicist and geologist to see a clear picture of the composition of the Earth's crust in a particular area. Obviously, this is tremendously useful in allowing for the exploration of petroleum and natural gas, as an actual image could be used to estimate the probability of formations existing in a particular area, and the characteristics of that potential formation. This technology has been extremely successful in raising the success rate of exploration efforts. In fact, using 3-D seismic has been estimated to increase the likelihood of successful reservoir location by 50 percent!

Although this technology is very useful, it is also very costly. 3-D seismic imaging can cost anywhere up to $1 million per 50 square mile area. The generation of 3-D images requires data to be collected from several thousand locations, as opposed to 2-D imaging, which only requires several hundred data points. As such, 3-D imaging is a much more involved and prolonged process. Therefore, it is usually used in conjunction with other exploration techniques. For example, a geophysicist may use traditional 2-D modeling and examination of geologic features to determine if there is a probability of the presence of natural gas. Once these basic techniques are used, 3-D seismic imaging may be used only in those areas that have a high probability of containing reservoirs.

In addition to broadly locating petroleum reservoirs, 3-D seismic imaging allows for the more accurate placement of wells to be drilled. This increases the productivity of successful wells, allowing for more petroleum and natural gas to be extracted from the ground. In fact, 3-D seismic can increase the recovery rates of productive wells to 40-50 percent, as opposed to 25-30 percent with traditional 2-D exploration techniques.

3-D seismic imaging has become an extremely important tool in the search for oil and natural gas. By 1980, only 100 3-D seismic imaging tests had been performed. However, by the mid 90's, 200 to 300 3-D seismic surveys were being performed each year. In 1996, in the Gulf of Mexico, one of the largest offshore oil and gas producing areas in the U.S., nearly 80 percent of wells drilled in the gulf were based on 3-D seismic data. In 1993, 75 percent of all onshore exploratory surveys conducted used 3-D seismic imaging.

Two dimensional computer assisted exploration includes generating an image of subsurface geology much in the same manner as in normal 2-D data interpretation. However, with the aid of computer technology, it is possible to generate much more detailed maps much quicker than the traditional method. In addition, with 2-D CAEX it is possible to use color graphic displays generated by a computer to highlight geologic features that may not be apparent using traditional 2-D seismic imaging methods.

While 2-D seismic imaging is less complicated and less detailed than 3-D imaging, it must be noted that 3-D imaging techniques were developed prior to 2-D techniques. Thus, although it does not appear to be the logical progression of techniques, the simpler 2-D imaging techniques were actually an extension of 3-D techniques, not the other way around. Because it is simpler, 2-D imaging is much cheaper, and more easily and quickly performed, than 3-D imaging. Because of this, 2-D CAEX imaging may be used in areas that are somewhat likely to contain natural gas deposits, but not likely enough to justify the full cost and time commitment required by 3-D imaging.

One of the latest breakthroughs in seismic exploration, and the modeling of underground rock formations, has been the introduction of four-dimensional (4-D) seismic imaging. This type of imaging is an extension of 3-D imaging technology. However, instead of achieving a simple, static image of the underground, in 4-D imaging the changes in structures and properties of underground formations are observed over time. Since the fourth dimension in 4-D imaging is time, it is also referred to as 4-D 'time lapse' imaging.

Various seismic readings of a particular area are taken at different times, and this sequence of data is fed into a powerful computer. The different images are amalgamated, to create a sort of 'movie' of what is going on under the ground. Through studying how seismic images change over time, geologists can gain a better understanding of many properties of the rock, including underground fluid flow, viscosity, temperature and saturation. Although very important in the exploration process, 4-D seismic images can also be used by petroleum geologists to evaluate the properties of a reservoir, including how it is expected to deplete once petroleum extraction has begun. Using 4-D imaging on a reservoir can increase recovery rates above what can be achieved using 2-D or 3-D imaging. Where the recovery rates using these two types of images are 25 to 30 percent and 40 to 50 percent respectively, the use of 4-D imaging can result in recover rates of 65 to 70 percent.

Tidak ada komentar:

Posting Komentar